

TrackPose Technical Spec

Pose Interpolation Library

picknik.ai/products

PickNik's TrackPose library provides 6 degree of freedom Cartesian trajectories to target arm states which guarantee jerk, acceleration, and velocity constraint enforcement & elimination of discontinuities in acceleration and velocity.

Algorithm Overview

Input

- The current state (current pose, velocity, and acceleration of the end effector)
- The target state (desired pose, velocity, and acceleration at the end effector)
- The desired time to reach the target state
- The maximum acceptable time to reach the target state ¹
- The maximum velocity, acceleration, and jerk for each Cartesian dimension
- · The period of the robot controller

Non-Jerk Limited Trajectory Generation

Output

- A smooth, jerk-limited 6DoF Cartesian trajectory
- Waypoints spaced at the desired control frequency
- The calculated time to reach the target state¹

¹ If a trajectory obeying maximum limits exists, the returned trajectory's time will equal desired time

TrackPose Smoothed Trajectory

Smoothed trajectory reduces hardware oscillation & wear

Performance

Algorithm runtime ²	less than 1 ms		
Algorithm completeness	If a solution exists for the provided input a solution is returned		
Algorithm optimality ³	Within 10% of optimal		
Trajectory density	1 waypoint per controller timestep		
End effector jerk	Does not exceed per-dimension limits		
End effector acceleration	Does not exceed per-dimension limits, is continuous		
End effector velocity	Does not exceed per-dimension limits, is continuous		

² See case studies below for details ³

details ³ If desired time is not possible and is increased

TrackPose Technical Spec

Algorithm Integration

Recommended robot controller rate	1000 Hz
Licensing	Per robot perpetual license
Distribution format	.so .dll ^5 ⁵
Integration support	Available ⁶
	E 4

⁴ Larger trajectories are possible but require longer algorithm runtime ⁵ Contact for dll library details

⁶Additional costs apply

Technical Scenario 1 - Planning a Small Motion at High Control Rate

In this case study, TrackPose rapidly smooths a small motion command, as if from streaming sensor data.

Input		System Configuration	
Current state	Pose = origin Velocity = 1cm/s Acceleration = 0 cm/s²	CPU Specs Intel i7-7700HQ, 2.8GHz, non-realtime kernel TrackPose Performance	
Target state	Pose = 5cm translation Velocity = 2 cm/s Acceleration = 0 cm/s²		
Desired duration	10 ms	TrackPose planning time	1.00 ms (1 kHz)
Constraints	Max vel (linear dimensions) = 1 m/s Max accel (linear dimensions) = 10 m/s² Max jerk (linear dimensions) = 1000 m/s³	Calculated duration	79 ms
		Number of waypoints	79
Robot controller period	10 ms		

Technical Scenario 2 - Planning A Large Translation with Roll

In this case study, TrackPose rapidly smooths a small motion command, as if from streaming sensor data.

Input		System Configuration	
Current state	Pose = origin Velocity = zero Acceleration = zero	CPU Specs	Intel i7-7700HQ, 2.8GHz, non-realtime kernel
Target state	Pose = 1.25 m translation, 3° roll Velocity = zero Acceleration = zero		
Desired duration	1.25 s	TrackPose Performance	
Constraints	Max vel (linear dimensions) = 1 m/s		
	Max accel (linear dimensions) = 8 m/s ² Max jerk (linear dimensions) = 20 m/s ³ Max vel (angular dimensions) = 1 rad/s Max accel (angular dimensions) = 1 rad/s ² Max jerk (angular dimensions) = 1 rad/s ³	TrackPose planning time	1.00 ms (1 kHz)
		Calculated duration	2.516 s
		Number of waypoints	629
Robot controller period	10 ms		