MoveIT 2 Progress & Roadmap
MoveIt 2.0 Alpha
Initial implementation by Acutronic

Announced: June 2019
ROS2 distro: Dashing Diademata
OS: Ubuntu 18.04 and Mac OS X 10.14
MoveIt 2.0 Alpha - Progress

- Most of moveit_core moveit_ros ported to ROS2
- 11 external dependencies have been ported
- Functional CI infrastructure: moveit_ci
- Capability for simple planning to joint-state goal
- Example ROS 2 control framework for Acutronic’s MARA robot
- Engaged PickNik to help advise them
- PickNik and the maintainers helped significantly with porting the dependencies, and porting MoveIt CI to ROS 2
Future development

Goal: Beta version by Q1 2020

Initial Project Funding: ROSin FTP + PickNik

Two developers working half time for limited development of MoveIt 2

Additional resources still needed for full ROS 2 conversion
MoveIt 2.0 Future Development

Roadmap and Milestones
Milestone 1

Straight Port to ROS 2
- Fully migrate existing Movelt packages to ROS 2
- Wrap up Acutronic's work porting core Movelt functionality
- Leverage ROS 2:
 - Build system (ament), middleware, launch parameters
 - Cleanup Movelt 2 codebase

Milestone 2

Realtime Support
- Reactive, closed-loop control to sensor input
 - Visual servoing, octomap updates
 - Preempt motion if new collision detected
- Separate global and local planner (hybrid planning)
 - Global planner (full collision checking): 30hz
 - Local planner (IK-based, field-based): 300hz
- Zero-memory copy integration to controllers (ros_control)
 - Tighter integration to ros_control
 - Integrate pilz_industrial_motion

Movelt Survey Results
- 91% most excited about ROS 2 realtime control
- 55% reactive planning and closed loop control
- 48% better integration with lower level realtime control
- 48% planning with dynamics

Milestone 3

Fully Leverage ROS 2
- Lifecycle management of Movelt nodes
 - Deterministic startup, reset, & shutdown sequences
- Leverage ROS2 component nodes
 - Ability to run Movelt as single or multi-process
 - Replace pluginlib with components
 - Cleanup API
 - More generic and standalone interfaces

Movelt Survey Results
- 47% excited about component nodes
Realtime Support

- Reactive, closed-loop control to sensor input
 - Visual servoing, octomap updates
 - Preempt motion if new collision detected
- Separate global and local planner (hybrid planning)
 - Global planner (full collision checking): ~30Hz
 - Local Planner (IK-based, field-based): ~300Hz
- Zero-memory copy integration to controllers (ros_control)
 - Tighter integration to ros_control
- Integrate pilz_industrial_motion
PickNik's Vision

MoveIt is a globally recognized, highly capable open source manipulation platform that enables organizations of all sizes to leverage robotics for their applications.
<table>
<thead>
<tr>
<th>Milestone 1</th>
<th>Milestone 2</th>
<th>Milestone 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight Port to ROS 2</td>
<td>Realtime Support</td>
<td>Fully Leverage ROS 2</td>
</tr>
<tr>
<td>Fully migrate existing MoveIt packages to ROS 2</td>
<td>Reactive, closed-loop control to sensor input</td>
<td>Lifecycle management of MoveIt nodes</td>
</tr>
<tr>
<td>Wrap up Autronic's work porting core MoveIt functionality</td>
<td>Visual servoing, octomap updates</td>
<td>Deterministic startup, reset, & shutdown sequences</td>
</tr>
<tr>
<td>Leverage ROS 2:</td>
<td>Preempt motion if new collision detected</td>
<td>Leverage ROS2 component nodes</td>
</tr>
<tr>
<td>Build system (ament), middleware, logging, parameters</td>
<td>Separate global and local planner (hybrid planning)</td>
<td>Ability to run MoveIt as single or multi-process</td>
</tr>
<tr>
<td>Cleanup MoveIt 2 codebase</td>
<td>Global planner (full collision checking): 30Hz</td>
<td>Replace pluginlib with components</td>
</tr>
<tr>
<td></td>
<td>Local planner (IK-based, field-based): 300Hz</td>
<td>Cleanup API</td>
</tr>
<tr>
<td></td>
<td>Zero-memory copy integration to controllers (ros_control)</td>
<td>More generic and standalone interfaces</td>
</tr>
<tr>
<td></td>
<td>Tighter integration to ros_control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrate pilz_industrial_motion</td>
<td></td>
</tr>
<tr>
<td>Movelt Survey Results</td>
<td>Movelt Survey Results</td>
<td></td>
</tr>
<tr>
<td>91% most excited about ROS 2 realtime control</td>
<td>47% excited about component nodes</td>
<td></td>
</tr>
<tr>
<td>55% reactive planning and closed loop control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48% better integration with lower level realtime control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48% planning with dynamics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Future Milestones

<table>
<thead>
<tr>
<th>Determinism</th>
<th>Improved Interfaces / State Machines</th>
<th>Machine Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of box / default planners return reliable paths</td>
<td>Deprecate the Pick and Place pipeline</td>
<td>Neural-network based motion planning - new plugins</td>
</tr>
<tr>
<td>Tune or replace OMPL, BIT*</td>
<td>Fully support the MoveIt Task Constructor</td>
<td>General near-optimal heuristics for path planning e.g. MPNet</td>
</tr>
<tr>
<td>Further optimize / smooth paths</td>
<td>First class support of state machines</td>
<td></td>
</tr>
<tr>
<td>Default use TOTG, TOPP time parameterization</td>
<td>Non-ROS C++ API</td>
<td></td>
</tr>
<tr>
<td>Use post-processing optimization (STOMP, TrajOpt)</td>
<td>Similar to MoveGroup but without middleware</td>
<td></td>
</tr>
<tr>
<td>Fully featured Cartesian Planner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Like Descartes but better and fully integrated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Force-torque control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Group Roadmapping This Afternoon

More to come!