The Industrial Trajectory Generation and Python API of pilz_industrial_motion

https://wiki.ros.org/pilz_robots

MoveIt Workshop 2019
Macau, November 2nd 2019

Christian Henkel
Advanced Development
Two talks

pilz_robot
Drivers
Hardware Support
→ ROScon

pilz_industrial_motion
Planner
API
→ NOW
Recap of „Safety Certified ROS-native Industrial Manipulator“ @ ROSCon

Traditional Setup
ROS would be merely an afterthought

Intended Setup
ROS as core component
Example Application: Visual Inspection

Task: Inspect part features for large number of product variants

Approach: Robot on-board camera supported on database to lookup poses and save results

Strengths of ROS:
- High-level control based on the adaption of State-Machine packages
- Interface with other software components
- Use of workspace based (OMPL) and deterministic (pilz_industrial_motion) motion planners

Current Setup Inspection Poses Demo Setup Machine setup
FTP Industrial Trajectory Generation for MoveIt!

Goal:
- Reproducible trajectories (PTP, LIN, CIRC)
- Fast computation
- Easy-to-use interface
 - Motion from RViz
 - Programming with Python API
 - Tutorials

Working for every robot which has a moveit_config.

Supported by ROSin - ROS-Industrial Quality-Assured Robot Software Components. More information: rosin-project.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 732287.
Strengths of Movelt!

The framework combines:

- Kinematics module(s)
- Collision checking with the environment model
- Trajectory execution

Goal: MoveGroupAction(MotionPlanRequest)

Robot Controller(s)

Joint TrajectoryAction

Environment Model

Joint Limits

Inverse Kinematics

move_group

Pilz CommandPlanner

other capabilities...

User Interface

RViz or Python or...

Christian Henkel

Industrial Trajectory Generation for Movelt!
Motion Types

LIN
Linear interpolation in cartesian space

PTP
Linear interpolation in joint space

CIRC
Circular interpolation in cartesian space
Pilz CommandPlanner

- Trapezoidal velocity profiles
- Collision checking (no avoidance)
- Blend combines a sequence of commands: e.g. LIN-LIN
User-Interface: Python-API

- Easy-to-use
- Versioning
- Move Command
- Reference Poses or Joint Values
- Relative Motions
- Sequences with Blending

```python
r = Robot(__REQUIRED_API_VERSION__)

# Simple ptp movement
r.move(Ptp(goal=[0, 0.5, 0.5, 0, 0, 0], vel_scale=0.4))

start_joint_values = r.get_current_joint_states()

# Relative ptp movement
r.move(Ptp(goal=[0.1, 0, 0, 0, 0, 0], relative=True, vel_scale=0.2))
r.move(Ptp(goal=Pose(position=Point(0, 0, -0.1)), relative=True))
r.move(Ptp(goal=[-0.2, 0, 0, 0, 0, 0], relative=True, acc_scale=0.2))

sequence = Sequence()
sequence.append(Lin(goal=Pose(position=Point(0.2, 0, 0.8)), vel_scale=0.1, acc_scale=0.1))
sequence.append(Circ(goal=Pose(position=Point(0.2, -0.2, 0.8)), center=Point(0.1, -0.1, 0.8), acc_scale=0.4))
sequence.append(Ptp(goal=pose_after_relative, vel_scale=0.2))
```

https://github.com/PilzDE/pilz_industrial_motion/blob/melodic-devel/pilz_robot_programming/examples/demo_program.py
With a focus on quality

Documentation
- Overview on wiki.ros.org/pilz_robots
- Tutorials
- API-Documentation

Tests
- Unit- and Integration tests (Travis-CI-Integration)
- ~100% code coverage
Summary / Outlook

Industrial Trajectory Generation
- LIN, PTP, CIRC
- Blending

Python API
- Easy to use
- Versatile

Example using two planners
- ompl + Pilz
- LIN to approach
- ompl in free space

MoveIt 2.0!

World MoveIt Day
Christian Henkel

Pilz GmbH & Co. KG
Felix-Wankel-Straße 2
73760 Ostfildern, Germany
Tel.: +49 711 3409-7860
c.henkel@pilz.de
post@henkelchristian.de

Please visit
https://github.com/pilzde/pilz_robot
https://github.com/pilzde/pilz_industrial_motion