Roscon + iROS 2019
Macau
About Mov.ai

- Helping robot developers
 - Quick goto market + long-term support
 - Visual launch of ROS Node network, in-browser IDE, SW Distribution, reversible upgrades, multi-protocol event processor
- Helping industrial operators and automation integrators
 - Tools to set up fleets of robots of different types

Commercial Grade ROS | ROS for Business

- VC funded startup, since 2016
- Team developed custom autonomous mobile robots for 7 years
- 20 engineers, based in Lisbon
- 2 AGV partners - cart moving (TUGBOT) and pallet moving (RPM)
- Launching in Macau ROSCON 2019

Inviting ROS community to join MOV.AI the Beta program
Visual Launch System for ROS

- Replaces roslaunch / rosrun framework with **Visual Launch Diagrams**
- Drag & Drop Nodes, Connect Node inputs/outputs
- **VLD** lines represent communication protocols between nodes
 - Modify Nodes/connections in split seconds
 - Organize multiple Node networks, Node versions & Parameters
 - Supports all ROS protocols, TF, Nodelets, pluginlib
Visual Launch System for ROS
Node Setup for Visual Launch

- Data required to deploy existing ROS node in Visual Launcher
- Input / Output ports (pub, sub, action, service)
- Parameters - command line, parameter server, environment vars
- Default parameters (template), drag into a Flow (instance)
- Support for multiple versions of same Node
- Migration tools - to help in input all the Node related data
Node Setup for Visual Launch

Information

- **Name:** amcl_test
- **Persistent:**
- **Dummy:**

Descrption:

AMCL is a probabilistic localization system for a robot moving in 2D. It implements the adaptive (or KLD-sampling) Monte Carlo localization approach which uses a particle filter to track the pose of a robot against a known map.

Parameters

I/O Configuration

- **Search**

<table>
<thead>
<tr>
<th>Name</th>
<th>Transport / Protocol</th>
<th>Package</th>
<th>Message</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>particlecloud</td>
<td>ROSI/Publisher</td>
<td>geometry_msgs</td>
<td>PoseArray</td>
<td></td>
</tr>
<tr>
<td>static_map</td>
<td>ROSI/ServiceClient</td>
<td>nav_msgs</td>
<td>GetMap</td>
<td></td>
</tr>
<tr>
<td>set_map</td>
<td>ROSI/ServiceServer</td>
<td>nav_msgs</td>
<td>SetMap</td>
<td></td>
</tr>
</tbody>
</table>
MOV.AI Nodes - IDE in Browser

- Multi-Protocol Event processor
 - Message/Event triggers Callback in Python
 - Support for ROS1, ROS2, HTTP, WebSocket, Serial Driver, Redis DB..
 - Callback code cannot access communication layer
- Native parallel processing
 - Callbacks are Re-entrant - Persistent data only via Redis DB API
 - AsyncIO backend + Cython (C level performance)
 - Resource Usage Profiling tools
- Upgrade / Downgrade - mandatory for industrial clients
 - Imported libraries - outside the callback code
 - GIT based versioning of Callbacks
State Transition

- Visual Launch Diagrams can act as State Machine Diagrams
- MOV.AI Nodes can act as “State Nodes”
 - “Transition” is one of the supported VLD protocols
- When a Node is transitioned-to
 - All non-connected nodes are recursively killed/disabled
- Visualize dependency between Robot’s State & required ROS nodes
- Visual ROS2 lifecycle manager
State Transition

Corridor navigation state

Cart Grabbing state
Customizable UI

- MVC framework
 - Collaborative UI (2-direct. link w db replicated on every robot)
 - Any Robot can act as Web server
- Extensible web API
 - HTTP/WebSockets protocols supported in MOV.AI Nodes
 - Custom server-side functions
 - REST API available for CRUDE actions (vs replicated DB)
- REST-full application
 - Develop apps with preferred js framework (React, Vue, etc)
 - Create and upload your own js application into Mov.AI system
- Dashboard Creator
 - Create operator views with stats and queues
 - Create custom dashboards to monitor and control fleets
 - Extensible set of customizable widgets
Thank you!

www.mov.ai
info@mov.ai