

CUSTOMER STORIES

Report On Needs of the ROS 2 Community

February 7, 2019

Prepared By:
PickNik Consulting

picknik.ai

Dave Coleman, PhD
Andy McEvoy, PhD

Stephen Brawner, PhD
Mike Lautman, MSE

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

2. SURVEY METHODOLOGY
 Survey questions and participants

3. KEY PATTERNS
 Most common feedback on problems in ROS 1 and needs in ROS 2

4. MIGRATION BLOCKAGES
 What is holding you back from switching?

5. VISUALIZATION AND RQT
 What visualizations approaches do you use with robotics?

6. DOCUMENTATION
 How do you feel about the documentation?

7. MARKETING

 How do you feel about the marketing and perception of ROS2?

8. CONCLUSION
 Our recommendations for improving ROS 2 adoption

1. EXECUTIVE SUMMARY

This report summarizes 15 interviews with users, or potential users, of the Robotic Operating
System (ROS) conducted by PickNik Consulting for Amazon Web Services and the ROS 2
Technical Steering Committee (TSC). It is motivated by Amazon's customer-focused approach
to developing their product specifications, and is intended to inform future ROS 2 resource
allocations after the December 2018 ROS Crystal, the third release of ROS 2.

The feedback collected and types of feature requests varied greatly. Even considering the
diverse applications of ROS, it is remarkable how many use cases and needs exist in the
robotics community. This plethora of sometimes conflicting requests inspires great respect for
the challenges faced by Open Robotics and the ROS 2 development team in making design
decisions and choosing the current feature set. While reviewing this report we ask the reader
keep in mind that criticizing ROS is much easier than actually creating an open source,
robot-agnostic, multi-purpose robotics middleware.

The primary takeaway from this report is that most of the key features needed by potential ROS
2 users have been addressed, but robustness and reliability through hardware testing is a huge
unaddressed concern of users. Similarly, a branding and marketing problem remains due to
overdue promises and scattered online assets. The strategy we believe would best address
both of these concerns would be to choose a flagship hardware platform and set inspiring
milestones (stretch goals) that would demonstrate ROS 2's applied capabilities (such as
navigation and manipulation) while generating impressive demo videos. This effort would also
spotlight missing feature areas still required for using ROS 2 on actual hardware.

2. SURVEY METHODOLOGY

Survey Questions
The first step in creating this report was to generate a standard questionnaire we would use to
consistently ask each customer their thoughts on robotics software, ROS 1, and ROS 2. The
following questions were asked:

● High-Level
○ What are your biggest problems with robotics software?

● Non-ROS Users
○ What were the driving factors to not use ROS?
○ Why do they do create their own software? What barriers are preventing them

from using ROS?
○ What other tools are they using?
○ What have you heard about ROS2?

● ROS1
○ What are your biggest problems with ROS1?

● ROS2
○ Have you looked at ROS2, what do you know about it?
○ What are you most excited about in ROS2?
○ Have you tried developing with ROS2?
○ What have you heard about ROS2?
○ What features do you believe are missing in ROS2 that are highest priority?
○ What would you like to see different in ROS2?
○ What is keeping you from fully adopting ROS2?

● More directed questions
○ How do you feel about the documentation in ROS2?
○ What visualizations approaches do you use with robotics?
○ Have you used RQT? What did you think about it?

Survey Participants
PickNik Consulting reached out to their greater robotics network requesting participants to
spend 15-30 minutes discussing their thoughts with us on robotics software. We grouped
invitees into ROS users and non-ROS users.

We invited 25 participants and had 15 actual interviews. The following companies are
represented in this survey data:

ROS Users Non ROS-users

Southwest Research Institute / ROS-Industrial
Fetch
Iron Ox
Plus One
Honeybee
Houston Mechatronics
Aescape
Rapyuta (x2)
Carbon

Verb Surgical
Wolf Robotics
In-position Technology
MSI TEC
MDA (x2)

3. KEY PATTERNS

We used our collected data to rank, in order of importance, the pain points in ROS 1, or that are
still perceived issues in ROS 2. We combined the biggest problems in ROS 1 and biggest desires
in ROS 2 from our surveys into a set of needs that we are calling the 'key patterns':

● Robustness and Reliability
● Powerful & Easy to Use Debugging Tools
● ROS Master as Single Point of Failure
● Leverage More Best-Practices
● Distributed/Multi-Robot Systems Support
● Cloud-Enabled Capabilities
● Lifecycle Management
● Deployment to Production
● Security

In the following sections we will further explain each customer request in detail. Again, these
sections are ordered from most commonly requested to least commonly requested.
Occasionally statements from interviewees will be directly quoted, but the sources of these
quotes have been left out for anonymity reasons.

Robustness and Reliability
This was by far the most reported issue with ROS 1, and the most cited reason for not yet
migrating to ROS 2.

Many roboticists who have worked with ROS 1 for actual applications have fought long, hard
battles addressing the "few and far between errors" that occur every "~30 days" when running a
ROS-enabled system in production. These kinds of issues were completely overlooked when

academic researchers focused on ROS 1 for research purposes, but are critical when any
downtime potentially means huge manufacturing line losses or bad brand reputation.

The more traditional integrators we talked to, who were non-ROS users, compared ROS users to
"just kids playing" and observed that there has been a "high failure rate of companies that
choose ROS". They also cited that using ROS would require their clients to employ highly skilled
and costly robotics software engineers to maintain their automation programs.

The ROS 1 users emphasized difficulty addressing the many edge cases that affect reliability.
They fear that, while many patches have been submitted to the core middleware of ROS 1, a
whole new host of edge-case issues are looming in ROS 2 that have barely begun to be
addressed.

A common concern around ROS 2 is whether it is being tested and verified enough on actual
hardware. The original company that developed ROS, Willow Garage, did a great job of creating
incredible demo videos of real robots running ROS in unstructured environments for longer
period of time - on the order of hours and days. In particular, Willow Garage established several
milestones for their flagship PR2 robot. The first milestone had the PR2 autonomously drive
3.14 kms, twice (two days in a row). The second milestone demonstrated the PR2 navigating
through eight doors and plugging its power cord into nine outlets using its arm. These videos,
published on YouTube in 2008 and 2009, demonstrated to the world that "we have a robust
platform to share with the Open Source robotics community" [Willow Garage blog post, Dec
2008]. ROS 2 does not yet have, to our knowledge, hardware milestones to inspire adoption and
drive development use cases.

Our interviews suggest potential ROS 2 users are holding out until ROS 2 has been
demonstrated on real robotic systems running "thousands of hours". They expressed concern
that Open Robotics' approach of being a software-only company results in sometimes
misdirected development efforts to things like build systems. To their knowledge, ROS2 projects
like the navigation2 package have only been demonstrated on the TurtleBot platform, and then,
only in simulation.

Representatives from ROS Industrial and from manufacturing were naturally the most vocal in
concerns about robustness and reliability. One representative said "I have not seen one thing
that I could even say ROS 2 is ready for primetime", emphasizing the need for tangible
demonstrations to show their industrial partners.

ROS 2 is likely far more tested on hardware than is currently known to common users. Large
funders of ROS 2 like Toyota are probably running robust systems, but clear marketing and
branding issues exist, perhaps due to the confidentiality of the projects driving ROS 2
development at Open Robotics. However, the ROSCon 2018 presentation from Toyota titled
"ROS2: Supercharging the Jaguar4x4" was not nearly as inspiring as the PR2 milestone videos
in 2008, leaving some attendees wondering why ROS hasn’t progressed in the past decade.

Related to reliability were general concerns around the maintenance and support of existing
ROS 1 packages that have left a bad taste for ROS users considering migrating to ROS 2. Will
ROS 2 be any different, or will these ever resource-constrained open source projects continue to
be "pseudo-maintained" and suffer from endless forks? A problem with ROS 1 is that rather than
having patches and improvements accepted into the original projects, many one-off forks were
created that stagnated. Will there be any quality assurance in what gets released in ROS 2? Of
course, many of these concerns are common pitfalls of open source projects that are
somewhat unavoidable. Perhaps the needed support has already been found through the ROS 2
technical steering committee resources.

Powerful and Easy To Use Debugging Tools

The next most common request in ROS 2 was for more robotics "tooling" to debug the
complexity of robotics. A live robotics system has many actuators, sensors, and processes
interconnected in non-deterministic ways. Unexpected behaviors and malfunctions can have
many subtle failure-points, and robotics developers want a middleware framework that aids in
"reducing the resolution time of bugs". They expressed the desire for more and better tools
along the lines of rostopic, rosservice, rosnode, including ways to "easily expose information
about the network". Network inspection "for the sophisticated middleware" was requested, such
as tools for telling you "which machines things are running on".

One cited issue with ROS 1 was that the "only way to debug a ROS 1 system is to run it and
inspect it"; this is an approach that scales poorly. New model-driven development approaches
are needed to aid in verification; they cited Matlab's Simulink as a primitive example of
hierarchical design of systems. "Composition can get complex quickly" was one comment. They
asked how do we still have segfaults and bugs in mature computer programs "like MS
Powerpoint" and expect our robotic software operating in the even more difficult real world to
not have bugs? New approaches to software development are needed as systems get more
complex.

ROS Master As Single Point of Failure

The users we talked to were most excited about the lack of roscore in ROS 2. They cited that
this was a "huge weak point" in their ROS 1 implementations, and allowed for a new level of
distributed systems. The choice of DDS and its lack of a master has been a big lure for almost
everyone we talked to.

Leverage More Best-Practices

A lot of criticism of ROS 1 and ROS 2 during our interviews was directed at a lack of standards
leveraged in ROS from much larger technology communities. For ROS 1, this lack of standards
is more understandable given the state of related technology in 2008. But various interviewed
ROS users were disappointed that more common standards today weren't utilized when
bringing together ROS 2, saying that the "tech stack is out of sync with developers".

The biggest examples of existing standards that ROS is not leveraging are the very mature
internet tech stacks and exploding IoT standards, which have solved many similar problems to
robotics. Another cited example is the gaming industry: robotics problems typically attempt to
recreate its perceived world in a video game-like environment and then make decisions based
on this digital representation. Why not build Rviz on modern gaming engines like Unity? Other
cited examples include the myriad of open source libraries popular today such as protobufs,
bazel, or just plain CMake files.

A similar concern was that even within ROS there are not enough best-practices. Aside from
commonly accepted interfaces for sensors and actuators, the ROS community leverages very
few well-defined interfaces. ROS's "loosely federated model" creates widely varying packages
that result in less-consistent user experiences for ROS users. More published standards for how
to develop with ROS could improve the quality of the ROS ecosystem. A suggestion from the
author is a single source of automated code formatters, code scanners, code linters, and
continuous integration.

Distributed/Multi-Robot Systems Support

When asked what features in ROS 2 are of highest priority to them, many users were keenly
interested in improved multi-robot support. ROS 1 was highly robot-centric, assuming there was
one robot per ROS master. Various implementations of distributed ROS 1 systems were
developed over the years, but they were second-class solutions that suffered from many
gotchas.

Potential ROS 2 users are looking for a robotics framework that supports maintaining a
distributed fleet of robots. They were interested in "mesh networks and redundancy". In
particular, better namespace resolution capabilities of multiple robotics was requested.

Cloud-Enabled Capabilities

Similar to the above discussion of best-practices, a common request was for better integration
into the web. ROS 2 should have out-of-the-box support for creating REST APIs. A desire for
"less bridges required to connect ROS to the internet" was expressed. The ROS 1 approach
using the ROS Bridge package is hopelessly out of date and the scorn of many companies we
talked to.

Better Lifecycle Management

From our interviews, lifecycle management was a much anticipated feature of ROS 2, sorely
lacking in ROS 1. Potential ROS 2 users are excited about having an "orderly way to shut things
down" and "manage [their] runtime environment". This promises to improve the ability to create
integration tests that previously were a "nightmare" without lifecycle management.

Several interviewees expressed concern that this feature was still in very early prototype stages,
though after reviewing the documentation, the author believes this is not actually the case.
However, this again points to a problem in ROS 2's maturity awareness.

Deployment to Production

As we near the end of our customer use case list, it should be noted that these are the items of
least concern reported from our interviewed ROS users.

Several interviewees expressed that improved deployment was an important feature desired in
ROS 2. After standing up a ROS 1 system, they expressed frustration in an unclear path to
deploying to production. There was "no gradual development pathway from very rapid prototype
ROS systems". In particular, one interviewee needed solutions for managing processes on
remote systems.

Arguably, this is the domain of commercial companies and not an open source project, but it
seems there is room for creating best practices and tools for deployment.

Security

Surprisingly, only three of our ROS users expressed desires for more security in ROS 2. Perhaps
this was an assumed attribute of ROS 2 due to the advertised feature set of DDS. A specific
desire was for a "locked-down production-ready" ROS system.

Other Requests

The remainder of the collected requests varied greatly - anything you could possibly request of a
robotic framework was requested. We've omitted that feedback here for brevity.

4. MIGRATION BLOCKAGES

We asked our interview participants "What is holding you back from switching?" Here we seek to
understand what it will take to migrate the whole ROS 1 community smoothly to ROS 2, such
that our shared efforts are maximized.

Many of the reasons we just outlined above in the "Key Patterns" section of this report. In
particular, robustness and reliability was the biggest cited reason.

Another popular response was that they were waiting for all packages they depend on to be
ported before they will take the leap and start migrating the packages they maintain. Speaking
to the Github issue tracker for ROS 2 features, one cited "All boxes must be checked for core
functionality". Another requested the "100 most popular ROS 1" packages be ported. Many cited
MoveIt! as a key package that would indicate enough of ROS had been ported, though the
interviewees may have biased their responses knowing the interviewers are the maintainers of
MoveIt!.

This waiting until someone else puts the effort first into migration is the common prisoner's
dilemma, as concerted cooperation would result in a better ROS 2 for everyone. Mitigating this
blockage seems to be one of the dominant strategies by the TSC currently in accelerating the
adoption of ROS 2.

A few established companies expressed no desire to switch, saying "there's absolutely nothing"
driving them to upgrade. These larger corporations that already invested heavily in ROS 1 can't
switch due to legacy support or long development cycles. Another issue is the now maturing
batch of robotic startups that built their tech on ROS 1. These companies are now entering "their
series B, C, etc" and "won't see it worthwhile to switch" as the investors begin demanding
returns.

Others cited reasons for not switching that, to the best of the author's knowledge, are no longer
true. They cited they were waiting for Rviz to be ported, actionlib, or other recently released
components in ROS Crystal.

Some of our interviewed ROS users said they actually were ready to switch, with the Crystal
release indicating that "times seem right to pull the trigger". For example, a small startup wants
"to migrate as soon as possible so new developers can learn ROS 2" instead of ROS 1. One
reported "I'm happy with the roadmap".

5. VISUALIZATION AND RQT

We asked users "What visualizations approaches do you use with robotics?" and the results
were not surprising. Essentially everyone uses and loves Rviz. One veteran ROS user noted that
"Rviz is a large lock-in thing driving people to continue to use ROS. No one sees value in
re-writing Rviz."

Most have used RQT to varying degrees. A few mentioned using Python's matplotlib for data
analysis, others Matlab. Interactive markers (a feature in Rviz) are also popular. Lastly, many
use custom Web-based user interfaces for customer-facing parts of their product.

Due to PickNik's recent collaboration with Amazon, we specifically asked users at the end of the
interview "What issues do you have with RQT?". The most popular feature was RQT's plotting
capabilities (rqt_plot) with everyone essentially loving and hating it. While it's a great tool for
visualizing live data streams from ROS topics, it is clunky and hard to use. Many had tried a
recent rewrite/fork of the plugin, a stand-alone application called plotjuggler. They cited it also
was missing features and was problematic.

Most people seem to use only a small subset of the RQT plugins, though they still cite that RQT
is what makes ROS friendly to beginners. They like the plugin interface aspect of the framework.
One cited the robot_monitor plugin is "very popular with firmware guys". Complaints included
RQT being too resource hungry and another company was discouraged by Qt's licensing model
that requires per-seat licensing for robotic installs.

6. DOCUMENTATION

In our interview we asked "How do you feel about the documentation?" We had a middle-of-the
road response to this question, with several saying "it's ok". Others had not really tried using
ROS 2 yet so could not comment.

Still others were less enthused: "when I looked at it, it was not very good" and another "it's not
even as documented as C-turtle was for ROS 1" which indicates it is really bad. Several
commented that it’s all over the place and very fragmented, due to a move from Open Robotics
to have an even more federated model in ROS 2. Some commented that its harder to contribute
to than the ROS 1 wiki, because of the more tightly-controlled pull request approach.

One responder said they really appreciated the effort put into design documentation, but that
there was a "disconnect between design docs and what was actually done". The documentation
was described as "hard to find" and required "going to the source code".

Notably, Willow Garage's previously mentioned milestones for the PR2 program and ROS 1
development included a third milestone. The third milestone was essentially having the entire
company spend a full month writing tutorials and documentation. This resulted in incredibly
high quality online assets that guided the beginner roboticist into learning ROS 1.

Creating a consistent user experience in learning ROS 2, starting from the basics and gradually
into more advanced topics, is a much needed area of investment. One of our interviewees
pointed out that (as of this writing) the first 10 "Basic" tutorials for ROS 2 cover the mundane
topic of build systems (ament and colcon) and cross compiling the code . For comparison, the 1

first tutorial of TensorFlow teaches you how to "train your first neural network" to identify
different images of clothing. "If the entry barriers for configuring and using the software on
robots is too high, even the most powerful of frameworks are useless" . 2

1 https://index.ros.org/doc/ros2/Tutorials/
2 Coleman et. al, "Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study"
 https://arxiv.org/pdf/1404.3785.pdf

7. MARKETING

One of the key takeaways the author has from these interviews is that ROS 2 is suffering a
branding problem. One ROS user said "it's been oversold for too long - 5 years - and everyone is
skeptical [of ROS 2]." Another pessimistic community member in our interviews said that "Only
non-ROS 1 users get excited about ROS 2." When asked why they haven't switched one said
"OSRF is pushing out an unfinished product... ROS 2 is still missing a ton".

Many of the concerns we heard were due to outdated information about ROS 2 and features that
are no longer actually missing. Despite the recent speed up of ROS 2 development, thanks in
part to the TSC, ROS 1 users have stopped paying as much attention to ROS 2 announcements
due to pessimism that it will never actually be ready.

One veteran observed that the original "ROS 1 developer community is burning out because
they've been pushing on robotics for so long". Yet a younger ROS developer remarked that
"during job searching ROS 2 seems to be in high demand," so it's all a matter of perspective.

We believe that a bigger marketing effort needs to be made to signal to the community ROS 2 is
finally ready for adoption. Understandably, Open Robotics has historically not chosen to focus
their limited resources on brand image, perhaps due to their academic roots. However, a little
more polish on the ROS 2 project could go away. The documentation and brand of ROS 2 is
scattered and inconsistent, with multiple sources of information of varying quality. A clear
promotional channel of new features and hardware video demonstrations is lacking, with the
heated next-gen Discourse forum the primary outlet.

8. CONCLUSION

From our interviews, validating ROS 2 on hardware platforms and promoting these efforts
through demo videos would be the single biggest driver of adoption. There is a need for a clear
flagship robot to develop ROS 2 against, as discussed in the Robustness and Reliability section.
This PR2-esq platform would keep the ROS 2 development requirements aligned with applied
roboticists solving complex real-world problems.

We recommend that to test the durability of ROS 2 and inspire the community to migrate, hard
robustness milestones should be established and worked towards, just as Willow Garage did for
ROS 1. These milestones should be bigger than the ones ROS 1 achieved a decade ago,
otherwise why should someone migrate from ROS 1? For example, perhaps Toyota's HSR
Human Support Robot could have an open-source version running pure ROS 2, that can do
everything the PR2 could do in its milestones but with 10x longer autonomous run time, with
multi-robot collaboration... and maybe with full Amazon cloud support.

Backing this milestone would be a huge library of documentation and tutorials to recreate the
demo, just as we had with the PR2. The first tutorial would be a quick-start to ROS 2 that would
guide beginners into easily running a fully simulated robotic system doing useful industrial or
consumer tasks. This would rebrand ROS 2 as a finished product that can wow users, just as
ROS 1 did for an entire decade of roboticists and developers.

Overall, ROS 2 has made huge progress in the lastest release towards becoming a mature
platform ready to supplant ROS 1. It's time to prove out the middleware in the real world, add
marketing polish, and change the community opinions about ROS 2's readiness. We look
forward to contributing to the success of the ROS 2 project and thank all the contributors who
have dedicated themselves to this momentous open source effort.

About PickNik Consulting
Our team is rooted with strong academic backgrounds of robotics theory combined with applied
software experience. PickNik's mission is to support the worldwide open source robotics
movement through community building, consulting expertise, and the development of
multi-purpose highly-capable motion planning software.

