
Eight Degrees of Di�culty for
Autonomous Navigation
Getting from Here to There Isn't Always a Walk in the Park
Last Updated: November 2020
Author: Dr. David Lu!!

It has been over fifty years since Shakey the robot started autonomously navigating around its
environment to the tune of Take Five. Yet to this day, getting machines to move around without hitting
obstacles remains a major area of research and development, from the major tech companies
developing autonomous vehicles to hobbyists trying to drive their creations around their homes.
Through various client projects, PickNik has identified eight key areas that can affect the overall
difficulty of autonomous navigation.

● Mode of Mobility
● Agility
● Robot Shape
● Planning Space
● Obstacles
● Localization
● Number of Agents
● Speed

https://www.youtube.com/watch?v=GmU7SimFkpU
https://www.youtube.com/watch?v=GmU7SimFkpU


Mode of Mobility: Walk and/or Roll

Source: ANYMal Robot, ETH Zurich

Our cars don't fall over when we turn them off, but I fall over if I fall asleep standing up. This is one of
many reasons why wheels are generally preferred over legs as the mode of locomotion in robotics. It is
much simpler to command two motors to rotate at a particular velocity than it is to do the complex
kinematics required to figure out where the best place to step is to move forward while also maintaining
balance. That's not to say that there haven't been incredible advancements in legged systems in the
past few years, but it does make the problem harder. On the flip side, it's much easier for me to go up
stairs than a Roomba.

https://www.youtube.com/watch?v=_rPvKlvyw2w&feature=emb_title
https://www.youtube.com/watch?v=_sBBaNYex3E


Agility: Go Where You Wanna Go

Source: More Parkour Atlas by Boston Dynamics

The best athletes can move in any direction almost instantaneously. They can dodge an opponent, do a
quick side step and turn around nearly effortlessly. For robots, it's easiest to navigate when there aren't
restrictions on which direction they can move at any particular time (aka holonomic robots). Willow
Garage's PR2 was nearly holonomic in that it had to rotate its casters internally first before moving in
any direction. More common, however, are differential drive robots, with two powered wheels, allowing
the robot to move forward, backward and turn in place. Such a robot is not holonomic because it cannot
move directly sideways. The restricted movement model slows down some maneuvers, but still gives
enough flexibility to handle many situations. Car-like steering systems introduce an additional layer of
complexity because cars can't turn in place, which is why parallel parking is such a pain and why three
point turns were invented. Legs on the other hand can provide a lot of additional agility, although that
freedom to move also comes with a lot more ways to fall over.

https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=0DBXuZv38l8
http://wiki.ros.org/Robots/PR2


Robot Shape: The Shape of You

Source: Disney's Big Hero 6

The size and shape of the robot also affect how hard it is to navigate. Circular robots are common
because they can rotate in place and be guaranteed not to hit anything. The same cannot be said for
other shapes. A square robot directly next to an obstacle can't turn. There can also be situations where
robots can fit through doorways when at one orientation, but not fit through when turned another way.
One helpful rule of thumb for operating in environments designed for humans is that most doors in the
United States are designed to be ADA Compliant and thus designing a robot greater than 32 inches/81
cm wide can cause problems. (ADA Compliance also means that wheeled robots won't be stymied by
stairs blocking their navigation at every turn.)

https://www.youtube.com/watch?v=8IdMPpKMdcc
https://www.ada-compliance.com/ada-compliance/404-doors-doorways-and-gates


Planning Space: Flatland

Source: 3D Elevation Map by ANYbotics

Most robots operate on the two dimensional plane, where the position can be described using an x and
a y coordinate and an orientation. This is sufficient for many interior places like warehouses or schools,
and lends itself to very efficient representations of the environment. However, the world is not flat. A flat
representation cannot represent all the places wheeled robots can drive, like a multistory parking
garage. Furthermore, not all robots can operate indoors on the floor. Operating outside often requires
knowing elevation as well; the shortest path may go over a mountain and the easiest path goes around
the mountain. Certain applications, namely flying robots, also need a third dimension for a z coordinate,
and need to track the robot's orientation with a more complex representation, like roll, pitch, and yaw.

https://github.com/ANYbotics/grid_map/blob/master/grid_map_rviz_plugin/doc/grid_map_rviz_plugin_example.png


Obstacles: Avoidance Mechanisms

Source: 3D Collision Avoidance for Navigation in Unstructured Environments using OctoMap

The easiest way to navigate is in a featureless plane, which is why people often learn to drive in empty
parking lots. However, most mobile robots need to avoid the obstacles around them, if for no other
reason than roboticists hate getting their shins bumped all the time. This is relatively simple if the robot
knows its entire environment beforehand, but the introduction of dynamic obstacles means that the
robot will need a sensor suite to detect whatever obstacles are thrown at it. The standard for many
years was to use a planar laser scanner, but that only worked to avoid obstacles that were at the exact
height of the laser. The real world, as it turns out, has more than two dimensions. Thus, robots that
relied on laser scanners could avoid table legs, but would often hit the table top, or run over small
obstacles like toes. Some applications use standard RGB cameras, but since 2010 and the introduction
of the Microsoft Kinect, three dimensional sensors have become fairly standard for robots. They
recognize many more obstacles with high accuracy, but come with their own calibration complexities
and limitations. Sensing an obstacle is also only the first step, after which the robot may need to
recognize it, predict where it's going and plan around it.

https://www.youtube.com/watch?v=sot6gjj3SzU


Localization: A Maze of Twisty Little Passages, All Alike

Source: Modified from 3D Lidar-SLAM With Loop Closure

While having no obstacles around the robot makes it easier to not hit anything, it makes it harder to
know precisely where you are. Even adding GPS will only give your position within a few meters.
Instead, most robotic systems rely on a system of localization based on existing static obstacles like
walls. This can be easier when a map of the environment is known beforehand, otherwise you have to
do simultaneous localization and mapping, which is a complex field unto itself. However, even when
you know the map fully, the problem of localization can still be difficult, depending on the accuracy of
the sensors and how unique the environment is, for example, if the robot must navigate through an
environment full of visually similar aisles.

https://www.youtube.com/watch?v=OV6wNr62nqQ
https://locusrobotics.com/video/cyberweek-videos-that-prove-the-future-of-ecommerce-warehouse-solutions/
https://locusrobotics.com/video/cyberweek-videos-that-prove-the-future-of-ecommerce-warehouse-solutions/


Number of Agents: Multiplayer Navigation

Source: Optimal Reciprocal Collision Avoidance / UNC

Navigating one robot can be hard enough. You could also make a system of multiple robots navigating
around where each robot pretends it is the only robot. However, there are many benefits to getting a
fleet of robots to communicate with each other and coordinate their motion. Where it gets really fun is
when the other agents that the robot must navigate around are people. The difficulty of that can vary,
depending on whether the people are trained to be around robots, or they're unsuspecting customers
who've never seen a robot before.

http://gamma.cs.unc.edu/ORCA/
https://www.youtube.com/watch?v=r7_lwq3BfkY


Speed: Of the Essence

Source: Unitree Robotics

The last component to touch on that can make navigation significantly harder is speed. The difficulty is
not only a function of robot speed (Shakey goes a bit slower than Tesla's "autopilot"), but also the
computation availability. It’s one thing if you're trying to drive an autonomous vehicle with the full force
of a Fortune 500 cloud infrastructure behind you; it's another if you're trying to run the whole thing on an
Arduino board. Moving at greater speeds without having adequate processing means can lead to one of
the least desirable outcomes in navigation: collisions. In the name of safety, it is often better to execute
slower moves that you can guarantee will not collide with obstacles than to move faster on a trajectory
that might collide with something.

The eight degrees listed above represent some broad ways in which robot navigation can be difficult.
As always, the devil is in the details. The specific context in which your robot operates will present
unique challenges that will require custom domain-specific solutions. At PickNik, we've expanded our
navigation capabilities to provide services that fit your needs.

https://www.youtube.com/watch?v=4Cj7q_iKu_Q




Previous Draft and Outline

While robotic arms represent a large swath of innovative robotics work today, and contain many
interesting subproblems including perception, controller tuning and planning, in many cases there's one
thing they don't have: mobility. Getting a machine to autonomously navigate around an environment has
been a fundamental part of robotics for at least the last half century, and now, it's one of the
fundamental competencies that PickNik Robotics offers.

In this essay, …

Use Cases

The concept of mobile robots covers a wide range of robot types, from the simplest differential drive
robot, to walking robots, cars, and beyond. Some of these use cases are easy, and some represent
grand challenges at the forefront of technological research.

Use Case 1:

1. Use Cases
a. Mostly Fit

i. Laundry Basket demo
1. https://www.cs.cmu.edu/~maxim/files/planfor3Dnav_icra12.pdf

ii. https://www.youtube.com/watch?v=sot6gjj3SzU
iii. Tuck the arms
iv. Other Shapes

b. Bad Fit
i. Other Motion Models
ii. Cars - Autoware et al

2. Components
a. Decomposing Navigation

i. Global Plan
ii. Local Plan

b. Costmaps
c. Coordination

3. Adaptability
a. Three Robots One Node

i. https://www.youtube.com/watch?v=mKmqgVUbQQM
ii. https://www.ros.org/news/2010/08/three-robots-one-ros-node.html

4. Best Practices
a. Parameter Files

5. Code Bases
a. OG Navigation
b. Robot Navigation
c. Navigation2
d. Plugins

https://www.cs.cmu.edu/~maxim/files/planfor3Dnav_icra12.pdf
https://www.youtube.com/watch?v=mKmqgVUbQQM
https://www.ros.org/news/2010/08/three-robots-one-ros-node.html


i. SBPL
ii. Hector


