
H
YB

R
ID

 P
LA

N
N

IN
G

20
22

P U B L I S H E D 2 0 2 2

W E L D I N G W I T H T H E U R 1 0 e
PickNik Robotics is world renowned for the development of

MoveIt for ROS as well as executing on world-class robotics

products with our partners both terrestrially and in space.

Phone : +1 720 513 2221

Address :

4730 Walnut St Suite 106

Boulder, CO 80301 United States of America

Email : hello@picknik.ai

Web : www.picknik.ai

HYBRID
PLANNING

R O B O T I C S
PICKNIK

P.01

AB
OU

T
PI

CK
NI

K

N
o

rt
h

 A
m

e
ri

c
a

A
s

ia

E
u

ro
p

e

PickNik works with some of
the most prominent companies
around the world with the most
advanced robotics solutions, in
either leading or supplementary
roles as necessary.

WORLDWIDE
PARTNERS

P.02

HYBRID PLANNING -
WELDING WITH THE UR10e

20
22

In 2021 the ROS 2 version of MoveIt acquired a novel motion planning architecture. With
“Hybrid Planning”finally merged in December, it’s now possible to implement a whole new
family of robot applications that require dynamic adaption or updates during trajectory
execution. While the architecture is very versatile, the existing default implementations
only give a glimpse on what Hybrid Planning is supposed to do in the future. For
developers it was still lacking practical examples and design guidelines.

In order to fill this gap, PickNik and Fraunhofer IPA have been working on realizing an
industrial robotic welding application using Hybrid Planning. The goal was to streamline
the multi-step motion planning approach in an adaptive single-shot execution. This post
gives some insights into the design and implementation of the pipeline, as well as our
learnings along the way.

ABOUT
HYBRID PLANNING

Fraunhofer’s welding robot is a UR10e mounted on a table with a welding gun and a laser
scanner attached to the wrist. In the original ROS 1 pipeline, the workpiece is being
positioned on the table and has a predefined welding seam that guides the toolpath
trajectory. The main difficulty is that the object’s pose is not known with enough accuracy
that the very fine tip of the welding gun could be applied in a safe and steady manner. In
order to allow for very accurate and robust results, the welding task of the ROS 1
implementation is split into two phases:

1.Scanning Motion:
Trace the predefined welding seam with a laser scanner and generate accurate path
waypoints

2.Welding Motion:
Follow scanned waypoints with the tip of the welding gun at constant velocity

ORIGINAL
WELDING PIPELINE

Before jumping into our Hybrid Planning adaptation, let’s take a quick look at these motion
phases.

Both phases produce very similar motion plans, only that the scanning motion follows the
pre-defined welding seam from a safe distance while pointing the scanner at the seam
profile. The images below show the robot during the scanning phase next to a visualization
of the scanned sensor data, representing the seam profile.

After scanning is completed, the sensor data is processed by iteratively generating
Cartesian waypoints and computing a continuous trajectory for the welding gun tip. Below
you see the tip being applied at the welding seam which doesn’t allow for large error
margins. Additionally, in order to produce consistent welding results as depicted on the
right, it’s absolutely critical that the motion velocity is very stable. This also feeds into the
design requirements for the Hybrid Planning setup.

The goal of the Hybrid Planning pipeline was to streamline the welding task by combining
the two phases of the original setup into a single run. For that, the scanning task would
have to be modified so that it could be run online while already applying the welding gun.
The general design requirements of the global and local planners come quite naturally
when separating static and dynamic constraints of the task:

THE HYBRID
PLANNING APPROACH

P.03

HY
BR

ID
 P

LA
NN

IN
G

P.04

20
22

With the planner requirements specified, we draft a minimal runtime logic that defines
the sequence of communication and work that the planners should run. The logic shows
how first the global planner is requested to produce a global welding trajectory, which is
then forwarded to the local planner. The local planner is then enabled for trajectory
execution, which effectively almost resembles a closed-loop control pattern: 1. read
sensor input, 2. compute waypoint, 3. publish a new control command. When the trajectory
has been completed, the local planner terminates and returns the successful action result.
There aren’t a lot of implementation details included here, but the drawing should already
give an idea on how the pipeline is supposed to work in practice.

The listed planner requirements don’t cover all of the problems that need to be
solved for the whole application. For instance, approaching the seam in a safe way,
running the first bits of the welding path where sensor input might be missing and good
error handling would involve more sophisticated requirements that are not considered
here.

RUNTIME LOGIC

The setup and source code of the demo can be found in the repo UR10e_welding_demo.
It includes the ported launch and configuration packages for bringing up the UR10e robot,
both for simulation and hardware runtime. The hybrid_planning_demo package includes
the planner implementation, in particular the main node executable which initializes the
planning requests and the implementations for the global and local planner plugin
interfaces.

The solver of the global planner is implemented by the class
GlobalMTCPlannerComponent which, as the name indicates, handles the planning
requests with a custom MoveIt Task Constructor (MTC) task implementation.

DEMO
IMPLEMENTATION

At the time of writing this blog post, the MTC task merely contains a couple stages that
handle Cartesian trajectories for approaching, welding, and retreating from the workpiece,
as well as a simple trajectory processing step. This task implementation will be replaced
with a modified version of the original MTC task from the ROS 1 pipeline once the port of
the corresponding library is completed. For now, this task fully serves as a test case for
the global trajectory execution which allows us to focus more on the local planner.The
local planner includes two plugin implementations, namely the SimpleServoSampler for
the TrajectoryOperatorInterface and the ServoSolver for the
LocalConstraintSolverInterface. Which seems complicated at first but makes more sense
when looking at the purpose of these plugins. The SimpleServoSampler is the trajectory
operator that handles the registration and unwinding of the global reference trajectory.
The plugin basically provides the immediately upcoming reference waypoints - or local
trajectory - that are supposed to be followed. The ServoSolver plugin, implementing the
LocalConstraintSolverInterface, uses iterative local trajectories as target and computes
the commands to follow them based on the current robot state. Additionally, the plugin
has a subscriber to a TwistStamped message topic that resembles the corrective motion
commands that are expected for sensor-based adaptations. In the demo, the twist
message can be published using keyboard inputs which will result in modified end-
effector rotations. This example shows how the hybrid planning pipeline supports reacting
to sensor input while still following the constraints of a global trajectory.

The Hybrid Planning pipeline uses a completely new architecture that requires a lot of
thinking ahead and planning in order to produce the desired results. Discussing, simplifying
and designing the requirements for the different plugins before starting any of the
implementation helps a lot with this. Also, drawing of the runtime logic acts as a mental
model that aids with understanding the behavior of the system. We decided to at first start
with a very minimalistic implementation that just runs a simple trajectory before iteratively
adding more features and improvements. The architecture makes it easy to focus on
changing one thing at a time, and that’s probably a best practice that everyone should
follow when working with it.

As of now, there is only a very simple set of plugin implementations provided with the hybrid
planning package, but as seen here, it often makes a lot of sense to implement custom
solvers. The MTC task that we use in the demo is probably not very useful for other settings,
just like a sensor-based waypoint adaptation class is probably very specific to its application
and context. Because of that it won’t be very easy to provide a feature-rich set of generic
hybrid planning solvers that everyone can use for their application just like that. More likely
we would continue to build and publish more reference implementations and examples that
can be taken as recipes for solving certain types of problems. We hope that at some point
there will be a recipe for any class of dynamic motion planning problems where developers
can start from instead of building the pipeline from scratch. We are still investigating use
cases and have active projects around shaping the ideas and best practices around hybrid
planning.

LEARNINGS & TIPS

P.05

HY
BR

ID
 P

LA
NN

IN
G

P.06

WE
ARE
PICKNIK
The PickNik team is a unique combination

of expert robotics research scientists and

senior software developers. Our

engineering team comprises over 85%

PhDs and Masters in robotics, all grounded

with high-quality coding abilities at the

same time.

We achieve this by supporting and

collaborating with the worldwide open

source robotics movement, providing you

with cutting-edge research. While open-

source robotics is our passion, we are

committed to protecting your core IP.

H
YB

R
ID

 P
LA

N
N

IN
G

CONTACT :

Phone : +1 720 513 2221

Address :

4730 Walnut St Suite 106

Boulder, CO 80301 United States of America

Email : hello@picknik.ai

Web : www.picknik.ai

R O B O T I C S
PICKNIK

