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Future space missions are expected to be increasingly uncrewed and robots are expected 
to perform station keeping duties. The state of the art in robotics makes full autonomous 
operation at rigorous space safety standards extremely challenging. At the same time, the 
communication delay between robots in space and operators on earth makes traditional 
teleoperation painfully slow. We have developed a hardware-agnostic framework for 
remotely operating robots that bridges the gap between full autonomy and teleoperation. The 
framework provides parametrized, reusable building blocks (called behaviors) for 
performing general robot operations such as opening hatches, pressing buttons, and picking 
up objects. When using these behaviors, an operator provides a few command inputs and 
approves the automatically computed plan before it is remotely executed. These behaviors 
can also be combined into much more complex objectives that can encode fallback behaviors 
if a particular behavior fails or conditional behaviors that depend on user or sensor inputs.


I. Introduction

In future space missions robots are expected to take on caretaker duties and perform payload operations 
autonomously. We have developed a software framework that fills the gap in existing robotics software by providing 
an easy-to-use interface for trained operators who may not have a background in robotics or software engineering. 
By offering various levels of autonomy, the operator remains firmly in control, but is not required to provide low-
level inputs for (sub)tasks that are routine or low risk. By providing control modes with increased autonomy it also 
becomes practical to operate robots over long communication delays and with low bandwidth availability, which is 
critical for future missions. Over time, through our software, we expect the degree of autonomy leveraged in practice 
to increase.


The framework presented here is targeting manipulation tasks over long time horizons. Outside of carefully 
controlled factory settings, it is currently difficult to have robotic manipulators perform such tasks with minimal 
supervision. The complexity lies in part in finding feasible motions for robots with many degrees of freedom, subject 
to complex motion constraints (including intermittent contact). In addition, human oversight is often still required 
for reliable perception, e.g., to help correctly identify possible targets and obstacles.


Our work is inspired in part by TaskForce, the supervisory control framework for humanoid robots developed by 
NASA JSC [1] (and its precursor Robot Task Commander [2]). Similar to TaskForce, we rely on so-called 
affordance templates [3–5] to capture the motion constraints for manipulating classes of objects. As an example, 
affordance templates can be used to concisely capture how to grasp a door handle and move it in such a way that a 
door is rotating around its hinges. There are several differences between TaskForce and our work. First, there is more 
of an emphasis on integration with a motion planning pipeline and a more formal approach to modeling high-level 
behaviors. Second, we enforce a more clear separation between an operator and developer: an operator cannot 
execute arbitrary code, but can combine behaviors in arbitrary ways. Our framework supports third-party 
development of additional behaviors that can be easily added to the user interface (UI) via plugins.


The use cases for our software framework are across all areas of space robotics: Intravehicular Activities (IVA), 
Extra- vehicular Activities (EVA), In-Space Servicing, Assembly, and Manufacturing (ISAM), and manipulation 
tasks in future lunar and planetary surface missions. For IVA, sample tasks that are enabled by our technology 
include cargo transfer, routine maintenance tasks, and tending to science experiments. These are tasks with a well-
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defined logical structure, but that cannot be solved by simply hard-coding some trajectories. This combination of 
clear high-level structure and on-the-fly motion planning to avoid collisions makes it a good fit for our technology. 
For EVA, a robot could prepare repairs for an astronaut to minimize human exposure to radiation or perform 
inspections/repairs semi-autonomously via remote supervision. For ISAM, we are working on visual servoing 
capabilities and capture/manipulation of moving targets. This is useful in the context of servicing satellites, for 
instance. Finally, for lunar and planetary rovers we envision the same framework being used to coordinate navigation 
and manipulation tasks (e.g., to navigate to a rock of interest and collect some samples).


The rest of the paper is organized as follows. Section II describes the overall design objectives for our system. In 
section III we cover the control and planning capabilities. With planning, we can differentiate between robot motion 
planning, basic task planning, and high-level behavior. Section II describes the end-user interface that enables 
remote operation of space robots. Section V contains concluding remarks as well as a summary of our ongoing and 
future work to extend the capabilities of our software framework.


II. System Design Objectives

The main objectives in designing our software framework for supervised autonomy are (1) to accelerate the 

development of novel robotic systems and (2) make operating such systems more accessible to non-robotics experts. 
There are thus two clear target audiences we have in mind who would benefit from this technology. The first 
audience consists of robotics and software engineers who would benefit from hardened software components that 
provide reusable, parameterized building blocks that can be used to build new robotic solutions in a hardware-
agnostic way. For this audience, the goal is to shorten development time, reduce the need for robotics experts, and 
support building and validating advanced robotics applications. The second audience consists of operators that need 
a user-friendly mechanism to task robots remotely at various levels of autonomy. Targeted use cases range from full 
autonomy over long time horizons to more manual human-in-the-loop control while providing strong safety 
guarantees in all cases. The same reusable building blocks that are accessible to developers are also available through 
a UI for operators and can be combined by a user to script new robot behaviors on the fly.


Our software framework is general and hardware agnostic, but is currently primarily aimed at (mobile) 
manipulators. We currently have the same software running on five types of manipulators with different numbers of 
degrees of freedom and sensors: Universal Robots UR5, Kinova Gen3, Kinova Gen3 Lite, HDT Adroit, and Sarcos 
Sapien. Typically, each manipulator is equipped with a Robotiq 2-finger gripper and an Intel RealSense camera at the 
wrist. An additional Intel RealSense camera is mounted overhead or nearby to provide better situational awareness.


Our work builds on top of the open source MoveIt software [6], a motion planning and manipulation package 
that has been used on over 150 robots. MoveIt is itself part of the robot software ecosystem formed by the Robot 
Operating System 2 (ROS 2) [7]. This facilitates the integration of our software with a broad range of hardware, 
including other sensors and manipulators. Several currently available space-hardened manipulators currently already 
use MoveIt and could be integrated with our software. ROS 2 is designed to be used in production environments. For 
space applications, a hardened, flight-ready version of ROS 2 called Space ROS is actively developed by Open 
Robotics. MoveIt already runs in the development version of Space ROS. Our long-term plan is to support both a 
ROS 2-based version of our software and a flight-certified Space ROS-based version.


III. Planning and Control Software

Below, we will give an overview of the planning and control infrastructure, in a bottom-up fashion, starting with 

low-level control, moving on to robot motion planning, task planning, and concluding with high-level behavior 
specification. The architecture is designed to be extensible, allowing users to define and use their own controllers, 
motion planning algorithms, and task planning algorithms via a plugin-based system.


A. Control

The control interface between hardware and our software is based on ROS 2 Control [8]. This abstracts away 

many hardware differences between different manipulators and makes it possible for higher-level software layers 
(such as MoveIt) to be hardware agnostic. The same software is currently being used on five different hardware 
configurations mentioned in Section II.


Controllers can be made task-dependent, with parameters that can be overridden on the fly as needed. For 
example, we have recently added an admittance controller where the admittance parameters can easily be tuned 
separately for each axis of translation and rotation in a given coordinate frame. This is useful to control compliance 
and applied force/torque in contact-rich tasks like opening doors/drawers and pushing buttons.


We have also created low-level control interfaces for controlling robots through different physics simulators (like 
Open Robotics’ Gazebo simulator and Nvidia’s Isaac Sim™). This is useful for two different reasons. First, it enables 



robot software developers to prototype new behaviors in simulation until the code can safely be deployed on 
hardware. It is key that the interface abstracts away between simulation and hardware, so that any differences 
between simulation and hardware experiments can be attributed mostly to modeling of hardware and physical 
realism of the simulator (rather than differences in high-level code). The second use of simulation is to enable 
verification and validation of robot behavior in many hypothetical scenarios that might be difficult to replicate on 
hardware.


While the focus in our software is on autonomy, we also support remote control of the end effector. For many 
manipulators teleoperation can be a frustrating experience, because it is often unclear to the operator whether the 
manipulator is close to joint limits or singularities. Furthermore, once the robot is “stuck” at joint limits or in a 
singularity, it is often unclear how to get unstuck and move towards the desired pose. To mitigate this problem, we 
have added tolerances to user-specified control inputs and use an inverse kinematics solver that can find joint 
commands (positions, velocities, accelerations) in real-time that keep the manipulator as far away from the limits 
and singularities as the tolerances allow. In our testing, this has made a big difference in usability for remote 
operators. However, using motion planning to move between predefined or user-defined waypoints is, in our 
experience, a more efficient way to perform large maneuvers that avoids singularities, joint limits and collisions 
automatically.


B. Motion planning

The underlying motion planning capabilities are provided by MoveIt [6]. MoveIt has a modular planning 

architecture and several different classes of motion planning algorithms are available for use. These algorithms make 
different trade-offs in terms of planning speed, completeness, and optimality. They also differ in the way that they 
can accommodate task-specific constraints or preferences. There is not one class of algorithms that is strictly better 
across all use cases, which is why MoveIt allows users to select, tune, and combine different algorithms based on the 
task.


The default planning backend uses the Open Motion Planning Library (OMPL), a library of many sampling-
based algorithms [9]. These algorithms sample random configurations in configuration space and connect them to 
other nearby configurations, typically through simple interpolated motions [10]. This results in a graph that concisely 
represents which parts of the configuration space are reachable. These algorithms are typically probabilistically 
complete (i.e., the probability of not finding a solution goes to 0 with each iteration, often at an exponential rate). 
Under certain conditions, they can also provide asymptotic (near-)optimality guarantees [11, 12]. Recent work has 
shown how these algorithms can be used in combination of arbitrary sets of hard constraints [13]. The constraints 
implicitly define a (often lower-dimensional) subspace of valid configurations, and with—the appropriate 
abstractions—sampling-based planners can operate on such implicit spaces in the same way as in “normal” 
configuration spaces. In practice this means that we can add, e.g., one or more position and orientation constraints to 
any part of the robot, and have any sampling-based planner produce continuous paths that respect these constraints. 
On top of this, it is also possible to independently choose a cost function such that optimizing planners produce paths 
that both respect the hard constraints and optimize the cost with respect to the specified cost function.


Other possible planning backends are available as well such as CHOMP [14] and STOMP [15], two trajectory 
optimization algorithms, and the Pilz planner, which computes traditional industrial motion plans using inverse 
kinematics-based methods.


C. Integrated task and motion planning

Integrated task and motion planning is concerned with combining planning over discrete state changes in objects 

with continuous motion planning [16]. In principle one could take a purely hierarchical approach by computing a 
high-level discrete plan and heuristically translate each discrete step into a continuous motion plan. This can lead to 
unexpected failures if the heuristic choices lead to infeasible motion planning problems (e.g., an inverse kinematics 
solution for placing an object on a table is not reachable). A tighter integration between task and motion planning 
can avoid such failures and is an active area of research [16].


While integrated task and motion planning can be done over long time horizons based on basic problem domain 
definitions and geometric constraints, computation times can in such cases be prohibitively expensive for interactive 
use by an operator. However, even the most basic manipulation tasks are not simply one call to a motion planning 
algorithm. Take, for example, the task of picking up an object. First, an end effector grasp pose needs to be selected. 
Given a grasp pose, one or more inverse kinematics (ik) solutions for the joint angles can be computed. For a given 
ik solution, it is customary to compute a Cartesian approach motion from some fixed distance to the object to be 
grasped. This is one (constrained) motion planning problem. Separately, we can plan an (unconstrained) motion from 
the robot’s current configuration to the start of the approach motion. There are several dependencies between these 
stages. Arbitrary choices in some stages can make it impossible to find solutions in other stages. To get around this 
problem, we use a 



task and motion planning framework called MoveIt Task Constructor [17], which provides a mechanism to create a 
mechanism to sketch out the task structure and constraints. It will then compute an end-to-end feasible solution path. 
By providing a sketch of the task structure, the typical combinatorial explosion associated with general task planning 
is mitigated and complete task and motion plans can often be computed in a matter of seconds.


D. High-level behavior

The definition of new behaviors within our framework is kept as general as possible. Motion planning, trajectory 

execution, collecting and processing sensor data, and prompting an operator for input are all modeled as individual 
behaviors. To help organize behaviors into more complex objectives, we rely on Behavior Trees [18], a concise, 
human-interpretable representation of a robot policy. Behavior trees originated in the game industry, but have also 
found significant traction in the robotics community. Behavior trees are modular and composable: basic behaviors 
can be combined into larger trees with well-defined semantics and such trees can be reused as subtrees within even 
larger trees. Behavior Trees often allow for parameters to be passed between behaviors in the tree, enabling relevant 
context to be passed on as well as allowing users to set values for parameters in parametric behaviors. Behavior trees 
are not limited to simple linear sequences of actions, but can also model conditional behavior dependent on operator 
or sensor input and use fallback actions (in case execution of an action fails).


While complex motions can be planned using MoveIt Task Constructor (MTC), this is not a requirement. For 
example, we have also defined a visual servoing behavior, which requires a tight loop between perception and 
control which is terminated by some event (e.g., based on image features, but possibly also based on force/torque 
sensor data). This type of servoing is outside the scope of MTC, which assumes that the only changes in the 
environment are caused by robot actions.


To compose behavior trees (i.e., objectives) there are several building blocks that can be divided into four 
different categories:


Primitive behaviors This includes planning various types of trajectories, executing those trajectories, prompting 
the user for plan approval, updating the model of the environment by incorporating a depth image from an 
RGBD camera, visual servoing, and so on. Different types of paths can be planned: free space paths to named 
waypoints, Cartesian paths, and constrained manipulation paths specified using affordance templates. The 
affordance templates encode paths as a sequence of so-called screw motions [19], which are characterized by a 
screw axis and pitch as well as force/torque parameters that characterize the physical interaction and the object 
associated with the affordance template [4]. For example, opening a hinged door with a door handle can be 
described by two screw motions: one for turning the door handle a given amount and another for moving the 
door along an arc.

Control flow blocks This category includes: a block to run a sequence of behaviors, a block to run several 
behaviors in parallel, if-then-else blocks, looping blocks, and so on.

Decorators Decorators are convenience functions that wrap around a behavior. They can be used to add a 
timeout or delay to a behavior or invert the success/failure exit status of a behavior, for example.

Named behavior trees Predefined behavior trees can be used as subtrees to compose larger, more complex 
behaviors. Including a named behavior tree is the equivalent of a function call in traditional programming.


These building blocks can be combined programmatically or through the operator interface (see next section) to 
form new objectives. In essence, the operator interface provides a visual programming language. The goal is to 
avoid most of the complexity of full-fledged programming languages (which would create a barrier to entry), but 
still provide enough expressiveness to capture common robot behavior patterns in an easy-to-use way. Parallel 
programming, for example, is often seen as an advanced programming skill, but is exposed as a basic primitive in 
MoveIt Studio. In many robotics applications, parallel programming is often needed to interleave planning and 
execution. One would like to be able to plan several pick and place operations, while executing the first pick. 
Similarly, when a mobile manipulator is navigating to a particular pose, it could compute manipulation plans. 
Similarly, some reactive programming patterns are also supported. For instance, a target can be tracked through 
visual servoing until it disappears from the field of view or an arm can push a button until a force threshold is 
reached.


Let us consider now a few examples of how behavior trees can be used to model some robot behaviors. First, 
consider the behavior tree for obtaining a 3D snapshot from a RGBD camera. This is a very basic objective that 
consists of a sequence of two primitive behaviors (Fig. 1a): obtain a depth image and update the model of the world 
(i.e., the planning scene). Note that each behavior can have input and output parameters. This is useful to pass 
context information from one behavior to another. Some of the input parameters can also be set explicitly by the 
operator. For instance, we can specify which camera to use. 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Fig. 1	 Example behavior trees for some of the built-in objectives: (a) take a 3D snapshot of the environment,

(b) pick an object, (c) open a door.


Next, consider the behavior tree for the “pick object” objective (Fig. 1b). When using the web interface, an 
operator can click in a camera view to pick a desired object. The 2D image coordinates are transformed to a 3D 
location and are associated with a segmented-out 3D shape. Programmatically, the same operation can also be 
performed. In the current implementation, the object selection is an implicit part of the objective and does not show 
up as a separate behavior. To pick the object, we first ensure the gripper is open. Next, we define, plan, and execute 
the grasp motion. MTC is used to create a pick object task. This includes several steps: a free-space motion, a 
Cartesian approach, grasp planning, etc. This task is parametric and does not consist of hard-coded motions. To 
instantiate this task, we need to prepend the current robot state to the task (“Setup MTC Current State”). With this 
information, the task is fully defined and a complete trajectory can be planned. If a user is available, a preview of the 
computed plan is shown to the user, who can either approve the plan or cancel. If approved, the plan is executed (and 
shown through the user interface, if used).


Finally, consider the behavior tree for opening a door (Fig. 1c). This objective is similar in structure to the “pick 
object” objective. The user inputs in this case consists of three points in a camera image: the first one marks the 
location of the rotational axis of a door handle, while the last two mark a line segment corresponding to the door’s 
hinge side. The door’s surface is automatically extracted from the depth image data. This, combined with the user 
inputs, is sufficient to compute the door handle’s rotational axis in 3D, orthogonal to the surface, and the hinge 
location in 3D, embedded in the door plane.


IV. Operator Interface

The user interface (UI) for our software is web-based and requires no software other than a web browser to be 

installed on the operator’s computer. The UI is organized around different modes of interaction with the environment 
and a remote robot. See Fig. 2 for an overview. The tabs at the top of the window are organized (left to right) from 
more autonomous modes of operation to more manual modes of operation. The first mode is called “Objective 
Builder” (Fig. 2a). In this mode one can browse and inspect a list of predefined objectives. For the selected objective 
the corresponding behavior tree is visualized. This behavior tree can be edited through the UI. New objectives can be 
defined from scratch or by copying and modifying existing ones. The next mode of operation is to have the robot 



perform specific objectives (Fig. 2b). A number of “favorite” objectives are listed at the top. By selecting “Show all
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Fig. 2 User interface overview. (a) The objective builder enables users to edit built-in objectives, modeled as 
behavior trees, or construct entirely new ones using a library of behaviors and other building blocks. (b) 
Objectives capture routine operations a robotic manipulator can perform. Different views provide the 
operator with situational awareness. (c) Via endpoint control the view of the camera at the end of the 
manipulator can be adjusted via predefined poses (top row of buttons) or via arrow buttons in the main 
camera view pane. (d) As a fallback mechanism there is also the option to control joints directly. 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Fig. 3 Door opening objective. (a) The operator selects the inputs for the objective: a door handle location 
and hinge axis. (b) After the handle and hinge is selected, a plan is computed. c A solution path is shown to the 
operator for approval. (d) The path is executed.


objectives,” the user can select any of the other defined objectives (and mark others as favorites, if desired). In this 
mode and the following ones, three different views are shown. By default, it shows two different camera views 
(from the end effector and overhead cameras) and a view of the model of the world that the robot uses for planning. 
The views can be changed. For example, it is possible to change one of the views to a behavior tree view. When 
executing an objective, the currently active behavior is highlighted, providing insight into the symbolic state of the 
overall system. To explore an environment and get better situational awareness, an operator can navigate a camera 
mounted on the wrist of the arm to different predefined poses (Fig. 2c). Additional poses can be defined by the 
operator for later reuse. When clicking on a button for a predefined pose, the system automatically computes a 
collision-free path from the current arm configuration to the desired pose. The operator can also make view 
adjustments via arrow buttons in the main camera view pane or open/close a robot gripper. In rare cases (e.g., to 
force a robot out of a singularity or joint limit), an operator may want manual joint control (Fig. 2d). When the 
system exhibits unexpected behavior, a developer may also find it useful to inspect some of the low-level logging 
information without having to log into a remote system. The UI provides access to this in the “Logs” tab (not 
shown). In different panes, a developer can select different types of logging information, related to different robot 
subsystems.


Figure 3 shows the steps of executing a specific objective, door opening, in more detail. The operator is 
prompted to click in the 2D camera image window to select a door handle location and hinge axis. This information 
is internally transformed to 3D poses of the handle and hinges using a depth image. An affordance template 
describes the motion constraints for opening a door. Appropriate motions for, first, grasping the door handle and, 
second, opening the door are previewed for approval by the operator. Once the operator approves the plan, it is 
executed on the robot and visualized in the UI. 



V. Discussion

We have presented a software framework that allows operators to remotely control robot manipulators at various 

levels of autonomy. Through pre-defined primitive behaviors, more complex objectives can be defined. As the state 
of the art in robotics advances, our framework will seamlessly support more autonomy over longer and longer time 
horizons.


There are several capabilities that we plan to incorporate into our software framework. First, we will add support 
for mobility by adding support for Nav2 [20], the ROS 2 framework for navigation. Nav2 is already leveraging the 
same behavior tree implementation as used by MoveIt Studio, which facilitates this integration. With this capability, 
one can script, e.g., collecting samples with a planetary rover (which involves both navigation and manipulation). 
Second, we plan to add support for multi-armed robots, where behaviors can be executed by a given arm or as a 
coordinated motion by several arms. We plan to further generalize this idea by allowing users to plan for arbitrary 
groups of joints. This is useful for planning and execution of motions for multiple arms, an arm and torso, or arm and 
mobile base. Third, we are currently actively working on extending the perception capabilities to reduce the 
dependency on a human operator. Specifically, we are leveraging machine learning techniques to perform semantic 
and instance segmentation of depth images. This will make it possible to replace, e.g., manual selection of door 
handles in the current door opening objective with automatic door handle/hinge prediction. Perception capabilities 
will also be critical in inspection tasks and anomaly detection tasks. Finally, we plan to develop an operator- and 
developer-friendly interface for our low-level admittance controller, such that it is each to specify compliance/
stiffness for each translational and rotational axis in a given coordinate frame of reference. This coordinate frame 
need not be fixed in the world, but can also be a moving frame. This facilitates manipulation of moving targets (e.g., 
door handles and valves), where the dynamical constraints are most conveniently expressed in object frame rather 
than world frame.


The need for the capabilities above is driven in part by client projects where MoveIt Studio is integrated in 
experimental space robot platforms. In the near future we plan to collaborate with manufacturers of space-rated 
manipulators and other space industry stakeholders to advance the technology readiness level of complete hardware 
and software solutions for increasing autonomy in future space missions. As the library of behaviors and list of 
support hardware continue to increase, we expect that it will become even easier to develop solutions for future 
supervised autonomy needs.
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